GEOTEXTILES AND MICROPLASTICS

Nicklas Gustavsson

Lead Consultant

Ramboll Health Science

RAMBOLL Bright ideas. Sustainable change.

Intended for The Swedish Environmental Protection Agency

Document type Report Date November 2022

GEOTEXTILES AND MICROPLASTICS IN SWEDEN AN ASSESSMENT

BACKGROUND AND AIM

- TODE LAURS

- Geotextiles potential source of unintentional microplastic emissions
- Under investigation by the Commission, geotextiles questions included in open public consultation
- Study to obtain information on geotextile composition, quantities, waste, use, alternatives, risks and microplastics emissions
- Literature study and interviews used to collect information

RESULTS – MATERIAL, QUANTITIES AND USE

Polymer	% of use
Polypropylene (PP)	92-99
Polyethylene terephthalate (PET)	5
polyethylene (PE)	2
Polyamide (PA)	1
Natural or biodegradable	2

- Ca 14900 ton geotextiles in 2021 (Sweden)
- Approximately 164-193 ktons in Europe/year
- Other geosynthetics 6% of total
- > 99,6% nonvowen
- > global geotextile market size
 6.72 billion US dollars 2021
- > an expected annual compound growth rate of 6.5%

- Separation and filtration most common applications (91%)
- Hydraulic applications represent approximately 7% of the total EU market for geosynthetics
- Consumer use estimated to ~10%
- Increased use in 1980s and 1990s

RESULTS – TESTING, WASTE, RECYCLED CONTENT

- Geotextiles are construction products under (EU) No 305/2011 (CPR)
- Harmonised standards require testing, i.e., weathering and oxidation testing
- > 25, 50 or 100 years service life
- No requirements related to microplastics

Standard	Pictogram	
EN 13249:2016		d
EN 13250:2016		d
EN 13251:2016		
EN 13252:2016	-*T	
EN 13253:2016	(B)	(

EN 15381:2008 No pictogram

Scope Geotextiles and geotextile-related products -Characteristics required for use in the construction of roads and other trafficked areas (excluding railways and asohalt inclusion).

Geotextiles and geotextile-related products haracteristics required for use in the construction of railways.

- Geotextiles and geotextile-related products Characteristics required for use in earthworks, foundations and retaining structures.
- Geotextiles and geotextile-related products Characteristics required for use in drainage systems.
- Geotextiles and geotextile-related products Characteristics required for use in erosion control works (coastal protection, bank revetments).
- Geotextiles and geotextile-related products Characteristics required for the use in the construction of reservoirs and dams.

Geotextiles and geotextile-related products — Characteristics required for use in the construction of canals.

Geotextiles and geotextile-related products — Characteristics required for use in the construction of tunnels and underground structures.

Geotextiles and geotextile-related products – Characteristics required for use in solid waste disposal.

Geotextiles and geotextile-related products — Characteristics required for use in liquid waste containment projects.

Geotextiles and geotextile-related products -Characteristics required for use in pavements and asphalt overlays.

- Most geotextile still in use not much waste
- Incineration or landfill most likely fate for exhumed geotextiles
- Possible to recycle in theory but still in early devlopment
- PCM/PIM only allowed in nonreinforcement applications with 5 year service life

DEGRADATION AND RISK FACTORS

- Degradation factors synergistic and weaken the geotextile.
- UV-exposure most important but also abrasion, chemical degradation, hydrolysis, biological degradation
- Not covering geotextiles according to instructions and hydraulic applications identified as risk uses.
- Relationship between degradation factors and microplastic formation not clear
- Fragments of geotextile have been identified on beaches in the Baltic Sea

Photo: VästMark Entreprenad AB

ESTMIMATION OF MICROPLASTIC RELEASE

Assumptions

Maximum scenario: Incorrect handling in construction uses (20%) and by consumers (50%). Expected lifetime halved (UV).

Hydrualic applications -> 20% mass loss due to abrasion (0.2%/year)

Lower scenario:

Incorrect handling in construction uses (1%) and by consumers (10%). Expected lifetime shortened (UV) from 100 - > 80 years

Hydrualic applications -> 1% mass loss due to abrasion (0.02%/year)

Results

Year	Lower (tonnes)	Max (tonnes)
2022	2	32
2030	3	55
2050	42	800
2080	280	4710
2121	15500	20900

These results assume disintegration into MP after service life is reached

CONCLUSIONS

- Geotextiles do not appear to currently be a large source of microplastics but may become in the future
- Not enough is known about the relationship between degradation, strength loss and microplastics formation
- There is also a lack of studies investigating geotextile release of fibres/particles
- There seems to be a need to develop methods to measure microplastics in soil samples

PHOTO: VÄSTMARK ENTREPRENAD AB

Bright ideas. Sustainable change.

