

Measures to reduce the input of tyre material into the environment

Matthias Barjenbruch, Phillip Lau, Luisa Reinhold, Daniel Venghaus, Johannes Neupert

TU Berlin, FG Siedlungswasserwirtschaft, Sekr. TIB1-B16, Gustav-Meyer-Allee 25, D - 13355 Berlin Tel.: +49 / (0) 30 / 314 72247, e-mail: matthias.barjenbruch@tu-berlin.de

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Top-Ten of microplastic emissions, Germany Total: 330.000 t/a; 4.000 g /(c a)

	Source	"Umsicht"- Report	Min.	max	Urban Water Managemen
1	Tyre wear	1,228.5	49.6	1,357	
2	Release from waste disposal	302.8	-	-	++
3	Abrasion bitumen in asphaltos	228			
4	Pellet losses	182	0,5	2,567.2	++
5	Drifts from plastic sports fields	131.8	-	-	+-
6	Release from construction sites	117.1			+-
7	Abrasion from shoe soles	109	17.5	175.4	
8	Abrasion from plastic packaging	99.1	-	-	
9	Abrasion from road markings	91	19.3	121.1	
10	Abrasion from textiles during laundry	76.8	-	-	++
13	Flocculants in urban water management	42.5	-	-	++
17	Microplastics from cosmetics	19.0	1.6	11.0	

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Bertling et al. 2018

Matthias Barjenbruch

Department of Urban Water Management, TU Berlin

Pathways of microplastic into the aquatic environment

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

berlin

Sample taking and analytics

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Microplastic determination particle number or mass?

Tackling microplastics in the environment, Brussels, 09/03/2023

berlin

Department of Urban Water Management, TU Berlin

Emissions by Stormwater - Tyre Wear -

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

E SW W

Tire wear scanning electron micrographic picture

Size: $5 - 350 \,\mu\text{m}$ (average 100 μm)

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023 Matthias Barjenbruch

Kreider et al. 2009

Department of Urban Water Management, TU Berlin

Tyre characteristics

Road surface characteristics

Vehicle characteristics

Vehicle and driver operation

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Emission factors – Engine power

Gebbe et al. 1997

berlin

Average engine power ofnew registrated passenger cars: >90 kw[Statista]

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Main measurement points Daily, Basket for sample taking

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

berlin

Mass distribution on the road

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

berlin

SBR: styrene-butadiene rubber

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Accumulation of tyre wear

TWP (German [Baensch-Baltruschat et	Urban y) 29 % al. 2020]	Rural 33 %	Motorway 38 %
TWP (EU) [Eunomia et al. 2018]	40 %	40 %	20 %
Surface Water	17,1 %	~ 0 %	3,0 %
Soil	2,8 %	32,5 %	34,0 %
Air	5%	5 %	5 %

[Baensch-Baltruschat et al. 2020]

Tyre wearemisson Germany EU

111 420 t/a 450 000 t/a 1.4 kg/(Ca·a) 1.0 kg /(Ca·a)

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

What are measure to reduce the impact of tire wear

Optimised street cleaning

berlin

Advanced wastewater treatment

(1) www.origmbh.de Measures to reduce the ind) www.sieker.de/de th(3).www.towardsdatascience.com Tackling microplastics in the environment, Brussels, 09/03/2023 (5) www.gbcc.eu

Matthias Barjer(4) Eoto von Dr. Harald Sommer Department of Urban Water Management, TU Berlin UrbanFilter - 9 moduls for 3 levels Decentral treatment

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Test pilot and standardisation

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

T III

Matthias Barjenbruen

Department of Urban Water Management, TU Berlin

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

berlir

Tyre wear emissions according manufactures Differnent tyre composition (ADAC Study)

Quelle: ADAC - 12/2021 / Tyre abrasion: wear and burden on the environment / 31940 RMU

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

berlin

Possible measures - TYRES

- Eliminating the highest abrasion performing tyres
 - test method + emission limiting value
- Labelling TWP emission according to the energy label
- Disclose tyre composition
- Extended Producer Responsibility (EPR) for tyre manufacturers (modulated fees)
- Alternative tyre materials
- Extending tyre lifetime
- Monitoring tyre emissions in the environment by adding a tracing material to the tyres

EU Study: Cost-benefit analysis of policy measures reducing unintentional release of microplastics, 2022

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Possible measures - VEHICLE

- Artificial intelligence and advanced driver assistance systems in vehicles to reduce abrasion
 - Promoting autonomous driving
- Acceleration and speed limitation in urban areas
- Enhance the monitoring of tyre pressure to reduce emission (not only focused on driver safety)
- Reducing vehicle weight
- Install capture device to collect tyre particles (Passenger / Trucks)
- Continuous axis alignment in vehicle design and maintenance (Tracking)

EU Study: Cost-benefit analysis of policy measures reducing unintentional release of microplastics, 2022

Further possible measures

ROAD

Abrasion rate criteria to be added to road design requirements (e.g., roundabouts) & road material characteristics (porous asphalt / rubber asphalt)

• SUSTAINABLE MOBILITY

- Awareness campaigns
- Speed limits (motorway / urban area)
- Improve traffic management
- Reduction automotive individual traffic
- Mileage / Road transport reduction
- Promote bicycle traffic

EU Study: Cost-benefit analysis of policy measures reducing unintentional release of microplastics, 2022

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

- Improve capture and treat road run-off water
 (e.g., Filter systems at Hot- Spot for gullies)
- Improve road cleaning in high emission hotspots (Intelligent network)
- Retention soil filters
- Sludge treatment
- Additional field research

Emissions by Wastewater Treatment plant

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

Results of Wastewater treatment plants

- High retention of microplastics in conventional treatment plants (> 99 %)
- Further reduction by advanced filtration (> 99,9 %)
- Future focus on combined sewer overflows and road runoff

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023

berlin

Summary and Outlook

- Microplastic sampling is very complex
 - New methods of sample taking were developed
- Sampling and analytics is not standardised

 - TGA/GCMS
 Mass of particles and material
- Road run off and stormwater overflows \rightarrow important impact
- Reduction of tyre wear emission for example:
 - Labelling TWP emission, alternative tyre materials
 - Speed and acceleration limitation in urban areas
 - Promote public transport and bicycle traffic
 - Treatment at emission hotspots, Improve road cleaning
- Wastewater treatment plants (WTP)
 - Microplastic removal >> 95% 99%
 - Effluents of WTP have a minor impact on MP emission
- Are regulations necessary?

Measures to reduce the input of tire material into the environment Tackling microplastics in the environment, Brussels, 09/03/2023